
OIC FIL CY
Contract N00014-86-K-0680

IN
Lfl

A Prototype for Remotely Shared Textual
Workspaces

Hussein M. Abdel- Wahab
Department of Computer Science
North Carolina State University

Raleigh, NC 27695

Sheng- Uei Guan and J. Nievergelt
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27514

14OV 2 3 1987

hi:: docuiment has been approved
if~ pliblic re,-lP se and sale; its
I di-;ti'ution is unlimited.

87 1 10

SUMMARY

Computer-based collaboration between geographically dispersed users is still lim-

ited primarily to electronic mail and file transfer, but there is increasing interest in

computer support for real-time interaction between remote users. The problem of

implementing remotely shared workspaces, which allow users to operate simulta-

neously on the same objects, is of broad interest. Our objective is to show textual

workspaces that allow real-time collaboration can be implemented efficiently by

using existing operating systems and communications primitives. This paper doc-

uments our experiences in implementing a prototype under Berkeley UNIX , using

the programming language C, and Berkeley Interprocess Communication facilities.

We describe design alternatives that take into account the communications band-

width between the different sites of the network, and we introduce an efficient

protocol that regulates user access to the shared workspace. L_- ,,-

'\I

KEY WORDS: Distributed systems, Real-time collaboration UNIX

Interprocess communications.

V _ ¢ --. - , - ,

1UNDC is a trademark of AT&T BeU Laboratories 'y .." 3

2 IDist

REMOTELY SHARED WORKSPACES: PROBLEM AND APPROACHES

In everyday life individuals meet to review and edit documents that include text

and pictures. The main objective of our work is to provide usable low-cost alterna-

tives to physical meetings held for the purpose of editing and reviewing documents.

Every participant in this 'virtual" meeting has in front of him a workspace where

he can operate on the same objects that other participants see in their workspace.

Just as a conference telephone call provides a shared "audio" space to the partic-

ipants, the systems we are describing provide a shared "visual" workspace. Even

if the quality of human interaction is not as high in the remote virtual meeting as

it is in the physical meeting, as long as it is above some threshold of acceptability,

economic considerations may well favor a remote meeting. With the prolifera-

tion of high bandwidth computer networks, and the increasing popularity and

affordability of powerful workstations, it is feasible to provide the users with the

environment and the tools to achieve this goal.

Today, computer-based collaboration between geographically dispersed users

is still limited primarily to electronic mail and file transfer, but several research

groups experiment with more powerful computer support for team workl,2' 3 . Let

us summarize the features of some of the prototypes described in the literature.

At the MIT Laboratory of Computer Science, users share information from

Otheir personal calendars to schedule meetings using a real-time conferencing sys-

tem, RTCAL 4 . Participants speak to each other over the phone and use their

workstation display as a blackboard. Another system, CES, is a collaborative

3

editing system for co-authors working asynchronously on a shared structured doc-

ument, where users can work independently on separate sections of the document 5.

At the Xerox PARC Intelligent Systems Laboratory, an experimental meet-

ing room, Colab, provides computational support for collaboration in face-to-face

* meetings. Several prototype collaboradion systems have been built using Colab,

such as WYSIWIS (What you see is what I see) which in a multiuser interface that

expresses many of the characteristics of a chalkboard in face to face meetings6 ,7 .

At IBM, an asynchronous conference system has been implemented for Bit-

net and Vnet 8 . It is not based on real-time interaction, users send and receive

information at their own convenience. At Stanford, an experimental multimedia

conferencing facility has been implemented using the V-system, a message-based

distributed operating system9.

In summary, research on computer support for people working together simul-

taneously, where real-time interaction is essential, is still in its beginnings. Most

work is based on experimental systems that exist only in one laboratory. In con-

trast to the prevailing trend, our objective is to build usable, low-cost remotely

shared workspaces based on widely available systems and single-user applications

programs, in order to allow a large user community to experiment with this new

technology of real-time collaboration. Our approach differs from other collabora-

tive tools in that we offer a general purpose utility that converts any single-user

tool into one that can be used for real-time collaboration among several remote

users.

This paper documents our experience in constructing a prototype for remotely

4

-W-

shared textual workspaces, with the intent to demonstrate the feasibility of im-

plementing such a system quickly using widely available software and hardware

resources. We use the C programming language and the UNIX system calls avail-

able under the 4.3 version of Berkeley. The users interact with the system using a

software tool such as a text editor, the only learning overhead is that of mastering

a few simple commands for session control.

The paper is organized as follows. We start by comparing two alternative

system designs; present details of a protocol for regulating user access to the

*shared workspace; describe the user interface and the prototype implementation.

We conclude with open issues and an outline of our future goals.

5

SAn

DESIGN ALTERNATIVES

Fig. 1 depicts a collaborative session between several users that share and operate

simultaneously on "objects" contained in a 'workspace". Examples of objects

are text files, graphs, or images. A workspace is a container for objects: a data

management system for creating, accessing, and displaying objects. The basic

mode of operation is what you see is what I see: all participants have identical

views of the objects. Users manipulate objects using "tools", i.e. single-user

application programs that can be used to operate on the objects. For example,

a text editor is an appropriate tool for text file objects. The basic entities of

our model: users, objects and tools, may reside at arbitrary sites of a computer

network. We have implemented a prototype system of remote shared workspaces

where objects are restricted to be text files, and tools can only accept input from

keyboards. For such "textual workspaces", participants may use different types of

terminals or woicstations.

If two or more participants can issue commands simultaneously, serious prob-

5%" lems may occur. For example, assume a text editor like t4 is used to edit a text

file that contains the line:

... the boy boy ran fast

If two users simultaneously issue the "dw" command to delete the duplicate word,

we end up with:

.... the ran fast

To make sure that at any one time, only one user can issue commands (the "ac-

6

tive user"), we introduce the synchronization concept of a token: the tool accepts

input only from the active user, the one who currently holds the token. The to-

ken circulates between the participants according to a fair and efficient protocol

described in the next section.

In addition to joint manipulation of objects, participants need to manage a

session (creating it, selecting objects, joining and leaving a session, etc.). Thus it

is natural to introduce two windows: a "tool window" Wt for input and output

from the tool, and a "control window" W, for session management, including token

control. Windows can be created using any available window management system

such as the Berkeley UNIX 4.3BSD window program that runs on any ASCII

terminal, or the MIT X-windows that runs on a variety of workstations including

SUNs and DEC VAXs.

Participants should be able to discuss what is being displayed on their screen.

An intensive discussion may require a telephone conference call, but occasional

comments and questions can be exchanged via the control window W., which

doubles as a "talk window".

For terminals with different physical characteristics, users should be aware

that the terminal with the smallest tool window determines what operations can

be followed conveniently by all users. All participants define a tool window Wt

with the same number of lines and characters per line. No inconvenience results

from control windows W, of different sizes.

Thus far we have discussed the functional design of the system. users see a

single shared workspace through the windows on their terminal. Possible imple-

7

mentations of this design differ according to the degree of (de-)centralization and

replication of the physical storage of the workspace objects and of the executable

code for the tool. Among many alternatives, we have implemented two designs

that appear to be most natural.

Fig. 2 shows a centralized implementation of workspace and tool. Every par-

ticipant is represented by a "user agent" process P. that handles both his tool

window and his control window (merges input from the windows and distributes

output to them). The centralized data and processes may reside on a separate

* computer or on one of the participant machine. Fig. 3 shows a replicated imple-

mentation where every participant has his own copy of workspace and tool. This

makes sense when each participant runs on a separate computer.

In both figures, processes P* called the session server process is connected

to all P processes (we choose '*' as a superscript of P, since the process is di-

rectly connected to other processes in a "star" like topology). The following is a

description of the major functions performed by P. and P" in each approach:

In the centralized model of Fig. 2, process P accepts input typed by the active

user in the tool window Wt and sends it to P* which forwards it the tool process.

Process P* reads the output generated from the tool process and send it to all P"

processes for display in Wt. In this model, we assume a high bandwidth between

the session server process P* and the participant sites in order to carry out the

usually large volume of data generated by the tool.

If the bandwidth is not sufficient to provide a reasonable response time, then

we may use the replicated model shown in Fig. 3. In this model, process P.

8

reads the input typed in window Wt by the active user and sends it to process

P*, which in turn broadcast it to every P, connected to it. Upon receiving the

input, P. forwards it to the local tool process. Thus every input typed by the

active user is given to every tool process via P°. The voluminous output from

the tool is displayed locally at each site. Therefore in the replicated model, only

the "keystrokes" need to travel through the network. This may lead to better

response for remote users connected to the session with low bandwidth channels.

At the begining of the session a copy of the original workspace objects is sent to

each participant, and at the end of the session all copies are deleted; only the

workspace objects at the "session creator" site is retained. A major challenge

of this approach is to keep all workspaces mutually consistent throughout the

duration of the session.

Input to the control window W, is handled in the same way in both models.

Process P, receives the input of any user (not only the active user) and process it

according to its type, e.g., if it is a token control command, appropriate messages

are send to P* and to the control window W,. In the next two sections we describe

in details the protocols and procedures for dealing with W, input.

4

NJ'

TOKEN MANAGEMENT PROTOCOL

How can users share access to the tool efficiently and fairly? For effective work, the

active user must be guaranteed an uninterrupted quantum of time, Q, once he

gets the token. For fairness, other participants must be able to request the token

and obtain it within a certain known waiting time. When the active user has to

release the token, he is given a brief grace period, G, to complete his current task.

Values for Q and G can be set when a session is created, depending on the tool

and the number of users. Current default values are: Q = 30 seconds, G = 5

seconds. Three token management commands:

GET-TOKEN. RELEASE-TOKEN and FIND-STATUS

are entered by typing CTRL-G. CTRL-R, and CTRL-F, respectively, in the control

window W,, where system responses are displayed.

GET-TOKEN: The system will react to the requesting user ("R-user") as follows:

1. If the token is free, the R-user gets it and given the message:

You have the token

All other participants receive the message:

R-user has the token

2. If the token is being held by another user (the "active user"), the fol-

lowing message is sent to the R-user:

pleas* wait

The request is inserted into a FIFO "token queue" maintained by the

session server P'. When the token becomes available, it is given to the

10

user at the head of the queue. If the queue is non-empty the message:

please release the token within Q seconds

is sent to the active user. If the active user does not release the token

after Q seconds, he is sent the message

token will be seized in G seconds

if the token is not released by the end of the grace period, the user is

given the message:

time expired, token seized

3. If the R-user is waiting in the token queue, he will get the message:

please be patient

RELEASE-TOKEN: If issued by the active user, makes him inactive. If issued by a

user waiting in the token queue, deletes his entry from the queue. If the

queue becomes empty after deletion, then the "release token" message

is retracted by displaying:

token request canceled, you may continue

FIND-STATUS: The active user name and the queue status are displayed.

Fig. 4 shows the state diagram for a user process P. with respect to the token.

Transitions from one state to another depend: on the clock, on token management

commands entered by the user, and on messages received from the server process

P*. Each transition is labeled by a pair event/action. An event is either a user

input in W,, an expired time, or a message received from P*. An action is either

a message send to P" or a message displayed in W,.

11

USER INTERFACE AND PROTOTYPE IMPLEMENTATION

To use our system, one user (called the "session creator") initiates a session by

typing:

% create-session

This creates the session server process P* which prompts the user to provide the

following information:

* participant names: the login names of all participants,

e.g., wahab guan jn

," * object names: the file names to be included in the workspace.

e.g., intro, seci, append

9 tool name: the tool name to be used during the session

e.g., vi

0 model type: specify whether a "centralized" or "replicated" model will be

used.

P* then displays an integer, the session-id, to be used by all participants in es-

bvr tablishing connections with P*. Note that the session-id is needed since there

may be more than one concurrent session on the machine running P, and partic-

ipants need to identify the session(s) they wish to join. Process P* waits for all

participants to be connected and join the session.

To join a session, a user must be on the participant list, otherwise any attempt

to join the session is rejected by P'. Each user creates the two windows Wt and W ,

12

........4..L......

using the Berkeley 4.3BSD window program (or any other window management

system).

For each window there must be an active process that reads input typed in

the window and send it to the user-agent process P,, and displays the messages

directed to the window by P, as shown in Fig 5 (a). In our implementation, in

order to save one process, we decided to let process P, runs in window Wg as

shown in Fig. 5(b). In the following we refer to process P, running in the control

window W, as the "chat" process.

The user creates process P. in the tool window Wt by typing:

% user-agent

P, asks the user to provide the following information:

" host name: the name of the machine where P" is running

" session-id: the session-id displayed by P" when it started.

Process P. displays an integer called port-id and waits for a connection by P,.

Switching to the control window W,, the user types the command:

% chat port-id

*where port-id is the number displayed by P. in window Wt. This creates process P

and uses the port-id to establish a connection with P,. Soon after this connection

is established, process P, is connected to P* using its host name and session-id.

When all participants on the list have been connected, process P* informs each

process P,. about the mode of operation: central or replicated. In central mode,

P' creates the tool process (see Fig.2), while in the replicated mode, P* sends a

13

MISI

copy of the workspace objects to each participant, and each participant runs his

own tool process (see Fig. 3).

When the session starts, the active participant uses window Wt to interact with

the tool in the way described in the tool manual, as if the active user were the

only user. Tool commands from other users are rejected with a warning message

sent to their control window W,.

In addition to the "Token Control Commands" discussed earlier, the following

"Session Control Commands" are available for participants to interact with the

session process P*:

ESC-END: to end the session by closing files and communications chan-

nels.

ESC-STAT: to display information about the session, such as: who are

the participants, the objects in the workspace, when the session has

started, etc.

The control window W, can also be used for conversation between users. Any line

typed in a control window that does not start with CTRL or ESC characters will

appear on all other W, windows preceded by the name of the writer.

Interprocess Communications

Communication between processes, e.g. between P. and P, is based on the

4.3 BSD stream sockets in the inet domain1 0 . This provides us with a reliable,

bidirectional virtual circuit connection between these unrelated processes running

at the same or at different machines of the network. For a complete description

14

4J

,tinjI W r W U W .. U-~y

of Berkeley UNIX Interprocess Communications facilities, see Reference 10 and

for an introduction see Reference 11. In our implementation, process P* creates

a socket, bind it to a port and listen for connections to be made by processes P .

In turn, each process P, creates a socket, bind to port and listen for connection

to be made by process P, in the same machine.

Processes use the SELECT system call to multiplex input from several sources 10 .

For example, process P, need to monitor the input from the socket connecting it

to process P, the standard input from window W1, the socket connecting it to pro-

cess P* and, in case of replicated model, the output from the tool process. Here

we should mention that many tools will not function properly without a terminal

for stdin and stdout, and in order to let these tools read from and write to other

process rather than a terminal, a "pseudo terminal" device is used between the

tool and these processes1 0 . For example, we have used a pseudo terminal between
P* and the tool in the central model, and between P, and the tool in the replicated

model.

Frame Types and Processing

Since the virtual circuit between process P. and P* will carry messages from

0different sources, messages are packaged in frames of the format:

TYPE I LENGTH DATA

Frames are of the following types:

token: for token control, such as "get token" etc.

session: for session control, such as "end session" etc.

15

11 0111V

chat: for conversation messages between participants.

tool: for input to or output from the tool.

Frme processing in P,, Frames are processed in P,, as follows:

1. if the user has the token, the input typed in window Wt is sent to P" in a

tool type frames.

2. data received from P, is processed according to the following cases:

" data starting with CTRL character is interpreted and a token type frames

is sent to P* and P will change its state accordingly.

. data starting with ESC character is checked and sent to P* in a session

type frames.

" any other data is sent to P* in a chat type frames.

3. data received from P* is acted upon as follows:

" token type frames is interpreted and a message is sent to process P,
for display in window W. P. will change its state accordingly.

" data in chat type frames is sent to P. for display in window W,.

" session type frames is interpreted and cause an appropriate actions,

e.g, terminate a process.

" data in tool type frames is processed based on the following two cases:

For replicated model: forward to the local tool process.

For central model: display in the tool window W.

16

Frame processing in P : Frames are processed in P" as follows:

1. token type frames received from P, are interpreted and handled according

to the token management protocol described earlier.

2. Received frames of type chat is forwarded to every P, process, except the

one it has come from.

3. tool type frames are processed according to the following cases:

o For replicated model: Broadcast the received frames to all P, processes,

* For single model: Forward the data to the tool process. The output

from the tool process is sent to all P processes in tool type frames.

4. session type frames are processed based on its meaning, for example, for an

end of session message, various housekeeping operations are performed.

Source Code

The system implemented consists of three main programs:

- session server (P*): 771 lines of C code.

- user agent (P.): 796 lines of C code.

- chat (P,): 185 lines of C code.

In addition, the common declarations and subroutines are 293 lines of C code.

Write to the authors for a copy of the source.

17

CONCLUSIONS, FUTURE GOALS

A simple remotely shared workspace system has been implemented using the UNIX

interprocess communication primitives. There appear to be three major directions

for research that promise to make collaborative teamwork a more effective and

widely used tool in the future:

1. Human factors studies as to what features and functions are valued and

N actually used by different users working on different tasks. For example,

insisting that all users work on the same, identical, text imposes severe syn-

chronization constraints that may slow down the work unnecessarily. When

users are happy with the model that they work on different versions of the

same object, versions that need not be identical at all times, less constraining

implementations become possible.

2. Studies of concurrency, consistency and synchronization that are particularly

suited to supporting real-time interaction among several people. Most of the

concepts and techniques known today were developed in response to prob-

lems of machine-machine interaction or human-machine interaction. It is

conceivable that novel synchronization problems and techniques will arise in

the context of human-human interaction via the intermediary of a machine.

* 3. The implementation of remotely shared graphics workspaces. This raises

problems of dealing with a greater variety of interactive I/O devices that

tend to differ from machine to machine.

18

.4

Acknowledgements

We are grateful to Peter Calingaert, John Menges, John Smith, Michael Stumm,

and the referees for helpful comments. This work was partly supported by ONR

under contract N00014-86-K-0680.

i1

l~lg

REFERENCES

1. I. Greif, 'Computer Support for Cooperative Office Activities', Proceedings

of the 1982 Office Automation Conference, San Francisco (April 1982).

2. S.K. Sarin, 'Interactive On-Line Conference', Ph.D. Thesis, MIT, Also avail-

able as Laboratory for Computer Science Technical Report MIT/LCS/TR-

330 (1984).

3. G. Foster, 'Collaborative Systems and Multi-user interfaces', Ph.D. disser-

tation, Division of Computer Science, University of California, Berkeley

(1986).

4. S. Sarin, and I. Greif, 'Computer-Based Real-Time Conferences', IEEE Com-

puter 18,10 Special issue on Computer-Based Multimedia Communications.

33-45 (October 1985).

5. R. Seliger, 'The Design and Implementation of a Distributed Program for

Collaborative Editing', Master Thesis, MIT, Also available as Laboratory

for Computer Science Technical Report MIT/LCS/TR-350 (1985).

6. M. Stefik, D. G. Borbrow, S. Lanning, D. Tatar, and G. Foster, 'WYSIWIS

revised: Early Experience with Multi-user interfaces', Proceedings of the

conference on Computer-Supported Cooperative Work, Austin Texas 276-

290 (December 1986).

7. M. Stefik, G. Foster, D. G. Borbrow, K. Kahn, S. Lanning, and L. Suchman,

20

4 " ", i = II

'Beyond the Chalkboard: Computer Support for Collaboration and Problem

Solving in Meetings', Communications of the ACM 30,1 32-47 (January

1987).

8. N. Jarrell, and W. Barrett, 'Network-based Systems for Asynchronous Group

Communication', Proceedings of the conference on Computer-Supported Co-

operative Work, Austin Texas, 184-191 (December 1986).

9. K. A. Lantz, 'An Experiment in Integrated Multimedia Conferencing', Pro-

ceedings of the conference on Computer-Supported Cooperative Work, Austin

Texas, 267-275 (December 1986).

10. S.J. Leffler, R.S. Fabry, W.N. Joy, P. Lapsley, S. Miller, and C. Torek, 'An

Advanced 4.3BSD Interprocess Communication Tutorial', Computer System

Research Group, Department of Electrical Engineering and Computer Sci-

ence, University of California, Berkeley (1986).

11. S. Sechrest, 'An Introductory 4.3BSD Interprocess Communication Tuto-

rial', Computer System Research Group, Department of Electrical Engi-

neering and Computer Science, University of California, Berkeley (1986).

21

I64, , , ,

WORKSPACE

object*
(00,text file*)

USERS

Fig. 1: General view of the system

22

objects *

r Workspace

0T0

Session Server..

User Agent Pu Usr gnt PRi.

Tool indo WtToot Window Wt

Contol indw WeConrolWindow We

Fig. 2: Centeral model

23

objects ' Sevrobjects
... .*eso ServerIf1*

Workspacew P Workspace

..........

Tool Window Wt olWidwW

Fig. 3: Replicated model

24

Type Releasetoken/
Send TOKREL NOTOK

L -,Type Gt token/

1 - Send R EQ TOK

WIIdFOR TOKEIM

Receive GOTTOK/
"You have the token"

!HAVETOKEN

Receive RELTOK/
"have it for 0 seconds"

Receive KEEPTOKI

Aff~r G secondsI
Send TOKREL & "token seized"

Receive KEEPTOKI "seize in G seconds"
may continue"

HA VE TOKEN"

Gseconds/

Fig. 4: Token control states for user agent process

25

Control Window P

(a)

V ~~~Tool Window_________

Figure 5: Connecting windows to user agent process

26

4

